
Anycast DNS Infrastructure
Measurement and Analysis
8th CENTR R&D Workshop

Dave Knight
17 May 2016

Dave Knight is an engineer at Dyn, working in the Infrastructure group. Engaged
day-to-day with advancing the platform and the services which run atop it.

Dyn is a cloud-based Internet Performance Management (IPM) company that
provides unrivaled visibility and control into cloud and public Internet resources.
Dyn’s platform monitors, controls and optimizes applications and infrastructure
through Data, Analytics, and Traffic Steering, ensuring traffic gets delivered faster,
safer, and more reliably than ever.

This talk concerns a technique to measure single trip times for DNS query
responses from anycast service instances.

Introduction

2

Problem statement

Anycast service distribution on the Internet presents
challenges for monitoring.

It’s hard to mimic the eyeball experience, so
compromises are employed.

3

A single monitoring node
cannot directly probe all
instances of an anycast
service, as only the
topologically least distant
instance is visible.

Problem statement (2)

4

192.0.2.1

192.0.2.1

192.0.2.1

dig
 @1

92.
0.2

.1

A single
monitoring node
may directly probe
all instances by
their
management
address...

Monitoring compromise

5

192.168.0.1

192.0.2.1

172.16.0.1

192.0.2.1

10.0.0.1

192.0.2.1

di
g
@1
92
.1
68
.0
.1

dig
@172

.16.
0.1

dig @10.0.0.1

...but then it’s likely
not exercising the
same paths as
actual users of the
service.

Many monitors (RUM, RIPE Atlas, etc), well distributed in the topology
may succeed in probing all service instances, but nondeterministically.

Monitoring compromise (2)

6

192.0.2.1

192.0.2.1

192.0.2.1

An instance of an anycast service with constrained route propagation
may remain invisible to all but the most widely distributed probes.

192.0.2.1

NO-EXPORT

192.0.2.1

Another compromise!

7

If we generate a query local to
the anycast service instance,
we can probe it directly.
If we spoof the source address
of that query we can direct the
response to our single
monitoring node.
We can probe all instances of
anycast service deterministically
and gather responses at one
node.

192.0.2.1

192.0.2.1

Re
sp
on
se

Qry

Qry

Qry

Response

Response

This sounds more exciting than it actually is.
Spoofing takes place inside the server and
results in a completely unsurprising packet
traversing the Internet:
DNS Response: 192.0.2.1:53 => 100.64.0.1:54321 †

No violation of the provisions of BCP38, or
MANRS, etc is being perpetrated here.

† Of course a packet with source and destination
in ranges not intended to be publicly routed would
in fact be surprising on the Internet

192.0.2.1

Some words on spoofing

8

SPOOF!

Re
sp
on
se

100.64.0.1

Spoofing a query

9

#!/usr/bin/perl # Net::RawIP is easy to use

use JSON::XS; # Our config is JSON flavoured
use Net::DNS; # Need to construct a query
use Net::RawIP; # Need to construct a packet
use Time::HiRes qw(time); # Need to do time in ms
use POSIX qw(strftime);

Encode current time when we
generate the query.

Collector listens on port 4653

Collector listens at 100.64.0.1
Guard against locally unanswerable
queries confusingly going elsewhere
with IP TTL=1

Spoofing a query (2)
DNS Message

1463295169321.dyndns.com IN SOA ? +NSID

UDP
dst port: 53

src port: 4653

data: DNS Message

IP
dst addr: 192.0.2.1

src addr: 100.64.0.1

ttl: 1

10

Collecting responses

#!/usr/bin/ruby # What? I like ruby...

require "socket" # Listen for responses on a socket
require "date" # Get time in ms
require "ipaddr" # Check ip address validity
require "collectd" # Send metrics to collectd
require "syslogger" # Send diagnostics to syslog
require "dnsruby" # Inspect DNS messages

11

Deconstructing a response

12

IP UDP
dst addr: 100.64.0.1 dst port: 4653

src addr: 192.0.2.1 src port: 53

DNS Message
;; OPT PSEUDOSECTION:

; NSID: hivecast-11-usiad.as15135.net

;; QUESTION SECTION:

;1463406752123.dyndns.com.IN SOA

;; AUTHORITY SECTION:

dyndns.com. 0 IN SOA ns0.dynamicnetworkservices.net.
hostmaster.dyndns.com. 2016051200 10800 1800 604800 1800

The source address is the anycast nameserver we are testing
src addr: 192.0.2.1

NSID names the anycast instance which sent the response
; NSID: hivecast-11-usiad.as15135.net

QNAME contains the time when the query was generated
;1463406752123.dyndns.com.IN SOA

Authority Section contains the SOA SERIAL of the tested zone
dyndns.com. .. IN SOA 2016051200

Analysing the response

13

What use is this?

We have a heartbeat!

We can watch for changes in the SOA serial.

Subtract the query generation time from the current time and we get the
single trip time for the response to get from the anycast instance to the
monitor node.
This assumes excellent clock synchronisation. This can otherwise still
be useful in detecting aberrant behaviour if the clocks are at least
consistently dyssynchronous.

14

Scaling up

Qry

Responsesnameserver

DRC

Qr
y

nameservernameserver
nameservernameservernameserver

Probe all of the nameservers on a node

Send responses to collectors running on other nodes.

Build a full mesh of single trip latencies.

DNS
Query
Spoofer

DNS
Response
Collector

DQS DRCDQS

Physical Node

Dyn’s edge platform

container
container

container
container

containers

re
so

lve
r

log
sta

sh

co
lle

ctd

bg
p

Many physical nodes around the
world.

Workloads run in Docker
containers.

Service workloads can advertise
their service prefixes in BGP.

The platform provides various
services, e.g. logging and metrics
to the contained applications.

Service and its dependencies in
the container gives us a single unit
of deployment.

DNS Query Spoofer and DNS
Response Collector are packaged
in one container.

This container is started on many
nodes with the same configuration.

Container

Dyn’s edge platform (2)

Health
Check

Supervisor

DQS

DRC

 "targets": [
 {
 "name": "dyndns.com",
 "host": "108.59.165.1",
 "port": 53
 }
],
 "collectors": [
 {
 "name": "hivecast-1-defra",
 "host": "80.231.25.21",
 "port": 4653
 },
 {
 "name": "hivecast-3-gblon",
 "host": "80.231.219.21",
 "port": 4653
 }
]

Configuration

Some JSON describes the targets
and collectors.

DQS send queries to each of the
targets on behalf of (with the
spoofed source address of) each
of the collectors.

Now we have a full mesh of
measurements.

Graphs!
Metrics sent to Collectd are viewable in a Grafana
dashboard with templated queries

[collector].drc-x.latency-[zone]-[nameserver]-[node]-[container]
 = single trip time in milliseconds

Nice and unthreatening
Cherry picked an hour when nothing odd is happening
Let’s look at these relationships

● hivecast-11-usiad ⇒ hivecast-11-usiad
● All probes ⇒ hivecast-11-usiad
● hivecast-11-usiad ⇒ All collectors
● All probes ⇒ All collectors

Node sending to itself, predictably low-latency ~ 1 ms

All nodes sending to 11-usiad, predictable latency spread
Not sure what causes the periods of jitter

11-usiad sending to All nodes, predictable latency spread
Spikes on non-auth service distributor nodes

All nodes sending to All nodes

Weird...
Now let’s look at an hour with curiously massive spikes

All nodes sending to All nodes
Those spikes range from ~1 to ~8 seconds!

Zoom in to the 20 minutes around the spikes
See this most clearly in:
All nodes sending to hivecast-1-defra

See the same spiky pattern for 1-defra
sending to itself. But don’t see that on other
nodes.

Weird… (2)
Our traditional monitoring hasn’t reported a problem with
this node, but clearly there is something to look at here.

These measurements are very new and we have barely
started to get to grips with them, or determine that they are
useful in general operations at this point.

We have a lot to look at.

Advantages
A new tool in the box
Auto discovery, monitors don’t need
to know of anycast instances in
advance
Probing can scale horizontally
(though maybe not with a full mesh)
No state means no timeouts, this
may reveal previously hidden
weirdness
Can measure latency in a single
direction

Limitations
Only useful for UDP
Currently only IPv4 is implemented
No authentication

Further work
Compare with traditional
measurements
Address known limitations
Publish the tools
Further explore the observations

Closing thoughts

30

QUESTIONS?
dknight@dyn.com

 THANK YOU!

